RC4559

Dual High-Gain Operational Amplifier

Features

- Unity gain bandwidth -4.0 MHz
- Slew rate - $2.0 \mathrm{~V} / \mu \mathrm{S}$
- Low noise voltage - $1.4 \mu \mathrm{VRMS}$
- Supply voltage $- \pm 22 \mathrm{~V}$ for RM4559 and $\pm 18 \mathrm{~V}$ for RC4559
- No frequency compensation required

Description

The RC4559 integrated circuit is a high performance dual operational amplifier internally compensated and constructed on a single silicon chip using an advanced epitaxial process.

These amplifiers feature improved AC performance which far exceeds that of the 741-type amplifiers. The specially designed low-noise input transistors allow the RC4559 to be used in low-noise signal processing applications such as audio preamplifiers and signal conditioners.

The RC4559 also has more output drive capability than 741-type amplifiers and can be used to drive a 600Ω load.

Pin Assignments

- No latch up
- Large common mode and differential voltage ranges
- Low power consumption
- Parameter tracking over temperature range
- Gain and phase match between amplifiers

Block Diagram

Absolute Maximum Ratings

(beyond which the device may be damaged) ${ }^{1}$

Parameter		Min	Typ	Max	$\begin{gathered} \hline \text { Units } \\ \hline \mathrm{V} \end{gathered}$
Supply Voltage	RM4559			± 22	
	RC4559			± 18	\bar{V}
Input Voltage ${ }^{2}$				± 15	V
Differential Input Voltage				30	V
$\mathrm{PDT}_{\mathrm{A}}<50^{\circ} \mathrm{C}$	SOIC			300	mW
	PDIP			468	
	CerDIP			833	
	TO-99			658	
Junction Temperature	SOIC, PDIP			125	${ }^{\circ} \mathrm{C}$
	CerDIP, TO-99			175	
Operating Temperature	RM4559	-55		125	${ }^{\circ} \mathrm{C}$
	RC4559	0		70	
Lead Soldering Temperature	PDIP, CerDIP, T0-99 (60 sec)			300	${ }^{\circ} \mathrm{C}$
	SOIC (10 sec)			260	
Output Short Circuit Duration ${ }^{3}$		Indefinite			

Notes:

1. Functional operation under any of these conditions is NOT implied.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground on one op amp only. Rating applies to $+75^{\circ} \mathrm{C}$ ambient temperature.

Matching Characteristics

(VS $= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Test Conditions	Typ	Units
Voltage Gain	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$	± 1.0	dB
Input Bias Current		± 15	nA
Input Offset Current		± 7.5	nA

Electrical Characteristics

$\left(\mathrm{VS}= \pm 15 \mathrm{~V}\right.$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameters	Test Conditions	RM4559			RC4559			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$		1.0	5.0		2.0	6.0	mV
Input Offset Current			5.0	100		5.0	100	nA
Input Bias Current			40	250		40	250	nA
Input Resistance (Differential Mode)		0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{RL} \geq 2 \mathrm{k} \Omega \\ & \mathrm{VOUT}= \pm 10 \mathrm{~V} \end{aligned}$	50	300		20	300		V / mV
Output Voltage Swing	$\mathrm{RL} \geq 10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$R \mathrm{~L} \geq 2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		
	$R \mathrm{~L} \geq 600 \Omega$	± 9.5	± 10		± 9.5	± 10		
Input Voltage Range		± 12	± 13		± 12	± 13		V
Common Mode Rejection Ratio	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$	80	100		80	100		dB
Power Supply Rejection Ratio	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$	82	100		82	100		dB
Supply Current	$R \mathrm{~L}=\infty$		3.3	5.6		3.3	5.6	mA
Transient Response Rise Time								
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=20 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$		80			80		$\mu \mathrm{S}$
	$C_{L} \leq 100 \mathrm{pF}$		35			35		\%
Slew Rate		1.5	2.0		1.5	2.0		$\mathrm{V} / \mu \mathrm{S}$
Unity Gain Bandwidth		3.0	4.0		3.0	4.0		MHz
Power Bandwidth	VOUT $=20 \mathrm{Vp-p}$	24	32		24	32		kHz
Input Noise Voltage ${ }^{1}$	$\mathrm{F}=20 \mathrm{~Hz}$ to 20 kHz		1.4	5.0		1.4	5.0	$\mu \mathrm{VRMS}$
Input Noise Current	$\mathrm{F}=20 \mathrm{~Hz}$ to 20kHz		25			25		pARMS
Channel Separation	$\begin{aligned} & \text { Gain }=100, \\ & F=10 \mathrm{kHz}, \mathrm{RS}=1 \mathrm{k} \Omega \end{aligned}$		90			90		dB

The following specifications apply for $\mathrm{RM}=-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{RC}=\mathbf{0}^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Input Offset Voltage	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$			6.0			7.5	mV
Input Offset Current				300			200	nA
Input Bias Current				500			300	nA
Large Signal Voltage Gain	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$, $\mathrm{VoUT}= \pm 10 \mathrm{~V}$	25			15			$\mathrm{~V} / \mathrm{mV}$
Output Voltage Swing	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$	± 10			± 10			V
Supply Current	$\mathrm{RL}=\infty$		4.0	6.6		4.0	6.6	mA

Note:

1. Sample tested only.

Typical Performance Characteristics

Figure 1. Input Bias Current vs. Temperature

Figure 3. Input Common Mode Voltage Range vs. Supply Voltage

Figure 5. Open Loop Voltage Gain vs. Temperature

Figure 2. Input Offset Current vs. Temperature

Figure 4. Open Loop Gain Voltage vs. Frequency

Figure 6. Power Consumption vs. Temperature

Typical Performance Characteristics (continued)

Figure 7. Output Voltage SWing vs. Supply Voltage

Figure 9. Output Voltage Swing vs. Frequency

Figure 11. Transient Response Output Voltage vs. Time

Figure 8. Output Voltage Swing vs. Load Resistance

Figure 10. Quiescent Current vs. Supply Voltage

Figure 12. Follower Large Signal Pulse Response Output Voltage vs. Time

Typical Performance Characteristics (continued)

Figure 13. Input Noise Current Density vs. Frequency

Figure 15. Channel Separation vs. Frequency

Figure 17. Output Voltage Swing vs. Frequency

Figure 14. Input Noise Voltage Density vs. Frequency

Figure 16. Total Harmonic Distortion vs. Output Voltage

Figure 18. Distortion vs. Frequency

Typical Applications

Figure 19. 400Hz Lowpass Butterworth Active Filter

Figure 20. Stereo Tone Control

Typical Applications (continued)

Figure 21. RIAA Preamplifier

Figure 22. Triangular-Wave Generator

Figure 23. Low Frequency Sine Wave Generator with Quadrature Output

Simplified Schematic Diagram

Mechanical Dimensions

8-Lead Ceramic DIP Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	-	.200	-	5.08	
b1	.014	.023	.36	.58	8
b2	.045	.065	1.14	1.65	2,8
c1	.008	.015	.20	.38	8
D	-	.405	-	10.29	4
E	.220	.310	5.59	7.87	4
e	.100 BSC		2.54 BSC		5,9
eA	300 BSC		7.62 BSC		7
L	.125	.200	3.18	5.08	
Q	.015	.060	.38	1.52	3
s1	.005	-	.13	-	6
α	90°	105°	90°	105°	

Notes:

1. Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
2. The minimum limit for dimension "b2" may be . 023 (.58 mm) for leads number 1, 4, 5 and 8 only.
3. Dimension "Q" shall be measured from the seating plane to the base plane.
4. This dimension allows for off-center lid, meniscus and glass overrun.
5. The basic pin spacing is $.100(2.54 \mathrm{~mm})$ between centerlines. Each pin centerline shall be located within $\pm .010(.25 \mathrm{~mm})$ of its exact longitudinal position relative to pins 1 and 8 .
6. Applies to all four corners (leads number $1,4,5$, and 8).
7. "eA" shall be measured at the center of the lead bends or at the centerline of the leads when " α " is 90°.
8. All leads - Increase maximum limit by $.003(.08 \mathrm{~mm})$ measured at the center of the flat, when lead finish applied.
9. Six spaces.

Mechanical Dimensions (continued)

8-Lead Plastic DIP Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	-	.210	-	5.33	
A1	.015	-	.38	-	
A2	.115	.195	2.93	4.95	
B	.014	.022	.36	.56	
B1	.045	.070	1.14	1.78	
C	.008	.015	.20	.38	4
D	.348	.430	8.84	10.92	2
D1	.005	-	.13	-	
E	.300	.325	7.62	8.26	
E1	.240	.280	6.10	7.11	2
e	.100 BSC	2.54 BSC			
eB	-	.430	-	10.92	
L	.115	.160	2.92	4.06	
N	8°				

Notes:

1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions shall not exceed .010 inch (0.25 mm).
3. Terminal numbers are for reference only.
4. "C" dimension does not include solder finish thickness.
5. Symbol " N " is the maximum number of terminals.

Mechanical Dimensions (continued)

8-Lead SOIC Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	.053	.069	1.35	1.75	
A 1	.004	.010	0.10	0.25	
B	.013	.020	0.33	0.51	
C	.008	.010	0.20	0.25	5
D	.189	.197	4.80	5.00	2
E	.150	.158	3.81	4.01	2
e	.050		BSC	1.27	
BSC					
H	.228	.244	5.79	6.20	
h	.010	.020	0.25	0.50	
L	.016	.050	0.40	1.27	3
N	8				
α	0°	80°	0°		8
${ }^{\circ}$	6				
ccc	-	.004	-	0.10	

Notes

1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
2. "D" and "E" do not include mold flash. Mold flash or protrusions shall not exceed .010 inch (0.25 mm).
3. "L" is the length of terminal for soldering to a substrate.
4. Terminal numbers are shown for reference only.
5. "C" dimension does not include solder finish thickness.
6. Symbol " N " is the maximum number of terminals.

Mechanical Dimensions (continued)

8-Lead Metal Can IC Header Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	. 165	. 185	4.19	4.70	
øb	. 016	. 019	. 41	. 48	1, 5
øb1	. 016	. 021	. 41	. 53	1, 5
øD	. 335	. 375	8.51	9.52	
øD1	. 305	. 335	7.75	8.51	
øD2	. 110	. 160	2.79	4.06	
e	. 200 BSC		5.08 BSC		
e1	. 100 BSC		2.54 BSC		
F	-	. 040	-	1.02	
k	. 027	. 034	. 69	. 86	
k1	. 027	. 045	. 69	1.14	2
L	. 500	. 750	12.70	19.05	1
L1	-	. 050	-	1.27	1
L2	. 250	-	6.35	-	1
Q	. 010	. 045	. 25	1.14	
α				S	

Notes:

1. (All leads) øb applies between L1 \& L2. øb1 applies between L2 \& . $500(12.70 \mathrm{~mm})$ from the reference plane. Diameter is uncontrolled in L1 \& beyond $.500(12.70 \mathrm{~mm})$ from the reference plane.
2. Measured from the maximum diameter of the product.
3. Leads having a maximum diameter $.019(.48 \mathrm{~mm})$ measured in gauging plane, $.054(1.37 \mathrm{~mm})+.001(.03 \mathrm{~mm})-.000(.00 \mathrm{~mm})$ below the reference plane of the product shall be within $.007(.18 \mathrm{~mm})$ of their true position relative to a maximum width tab.
4. The product may be measured by direct methods or by gauge.
5. All leads - increase maximum limit by $.003(.08 \mathrm{~mm})$ when lead finish is applied.

Ordering Information

Product Number	Temperature Range	Screening	Package
RC4559M	0° to $70^{\circ} \mathrm{C}$	Commercial	8 Pin Wide SOIC
RC4559N	0° to $70^{\circ} \mathrm{C}$	Commercial	8 Pin Plastic DIP
RC4559D	0° to $70^{\circ} \mathrm{C}$	Commercial	8 Pin Ceramic DIP
RM4559D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Commercial	8 Pin Ceramic DIP
RM4559D/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Military	8 Pin Ceramic DIP
RM4559T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Commercial	8 Pin TO-99 Metal Can
RM4559T/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Military	8 Pin TO-99 Metal Can

Note:

1. /883B suffix denotes MIL-STD-883, Par. 1.2.1 compliant device.

The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the terms and conditions of any subsequent sale. Raytheon's liability shall be determined solely by its standard terms and conditions of sale. No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied. Raytheon reserves the right to change the circuitry and any other data at any time without notice and assumes no liability for errors.

LIFE SUPPORT POLICY:

Raytheon's products are not designed for use in life support applications, wherein a failure or malfunction of the component can reasonably be expected to result in personal injury. The user of Raytheon components in life support applications assumes all risk of such use and indemnifies Raytheon Company against all damages.

Raytheon Electronics
Semiconductor Division
350 Ellis Street
Mountain View CA 94043
4159689211
FAX 4159667742

